Mathematical Foundations of Infinite-Dimensional Statistical Models Chapter 3.2

Evarist Giné and Richard Nickl

Presenter : Seonghyeon Kim

2018.10.26

Evarist Giné and Richard Nickl **Presenter**Mathematical Foundations of Infinite-Dimens

2018.10.26 1 / 22

3.2 Rademacher Processes

Rademacher Processes

 $\epsilon_1, \cdots, \epsilon_n$: independent Rademacher variables, independent of the variables X_i

Conditionally on the variables X_i , $\sum_{i=1}^n \epsilon_i f(X_i)$ is a Rademacher process.

$$t \to \sum_{i=1}^n t_i \epsilon_i, t \in T \subseteq \mathbb{R}^n$$

Since Rademacher processes are sub-Gaussian, the metric entropy moment bounds for sub-Gaussian processes given in Section 2.3 apply to these processes.

3.2.1 A Comparison Principle for Rademacher Processes

Contraction vanishing at 0

$arphi:\mathbb{R} o\mathbb{R}$ is called contraction vanishing at 0 if arphi satisfies $|arphi(s)-arphi(t)|\leq |s-t|, \hspace{1em}$ for all $s,t\in\mathbb{R}$ arphi(0)=0

Theorem 3.2.1

Let F be a nonnegative, convex and nondecreasing function defined on $[0,\infty)$. Let $\varphi_i : \mathbb{R} \to \mathbb{R}$ be contractions vanishing at 0, and let T be a bounded set of \mathbb{R}_n , $n < \infty$. Then

$$\mathsf{EF}\left(\frac{1}{2}\left\|\sum_{i=1}^{n}\epsilon_{i}\varphi_{i}(t_{i})\right\|_{T}\right) \leq \mathsf{EF}\left(\left\|\sum_{i=1}^{n}\epsilon_{i}t_{i}\right\|_{T}\right)$$

where $t = (t_1, \dots, t_n)$ and $\|\cdot\|_T$ denotes, as usual, supremum over all $t \in T$.

Notation for Corollary 3.2.2

 \mathcal{F} : a countable class of measurable functions $S \to \mathbb{R}$ such that $F(x) < \infty$ for all $x \in S$, where $F(x) = \sup_{f \in \mathcal{F}} |f(x)|$.

$$U = \max_{i=1}^{n} |F(X_i)|$$

$$\sigma^2 = \sup_{f \in \mathcal{F}} \sum_{i=1}^{n} Ef^2(X_i) / n. \text{ We assume } \sigma^2 < \infty.$$

Corollary 3.2.2

.

$$E\left\|\sum_{i=1}^{n} \epsilon_{i} f^{2}(X_{i})\right\|_{\mathcal{F}} \leq 4E\left[U\left\|\sum_{i=1}^{n} \epsilon_{i} f(X_{i})\right\|_{\mathcal{F}}\right]$$
$$E\left\|\sum_{i=1}^{n} f^{2}(X_{i})\right\|_{\mathcal{F}} \leq n\sigma^{2} + 8E\left[U\left\|\sum_{i=1}^{n} \epsilon_{i} f(X_{i})\right\|_{\mathcal{F}}\right]$$

Evarist Giné and Richard Nickl **Presenter**Mathematical Foundations of Infinite-Dimens

Proof of Corollary 3.2.2

For
$$X_1, \dots, X_n$$
 fixed, we take in Theorem 3.2.1
 $t_i = Uf(X_i),$
 $T = \{(Uf(X_1), \dots, Uf(X_n)) : f \in \mathcal{F}\}$ and
 $\varphi_i(s) = s^2/2U^2 \wedge U^2/2,$ so
 $\varphi_i(t_i) = \varphi_i(Uf(X_i)) = f^2(X_i)/2 \wedge U^2/2 = f^2(X_i)/2.$

Proof of Corollary 3.2.2

The preceding theorem gives

$$\frac{1}{4}E_{\epsilon}\left\|\sum_{i=1}^{n}\epsilon_{i}f^{2}(X_{i})\right\|_{\mathcal{F}}\leq UE_{\epsilon}\left\|\sum_{i=1}^{n}\epsilon_{i}f(X_{i})\right\|_{\mathcal{F}}$$

. Integrating with respect to the variables X_i and then applying the basic randomisation inequality

$$E \left\| \sum_{i=1}^{n} f^{2}(X_{i}) \right\|_{\mathcal{F}} \leq n\sigma^{2} + E \left\| \sum_{i=1}^{n} (f^{2}(X_{i}) - Ef^{2}(X_{i})) \right\|_{\mathcal{F}}$$
$$\leq n\sigma^{2} + 2E \left\| \sum_{i=1}^{n} \epsilon_{i} f^{2}(X_{i}) \right\|_{\mathcal{F}}$$
$$\leq n\sigma^{2} + 8E \left[U \left\| \sum_{i=1}^{n} \epsilon_{i} f(X_{i}) \right\|_{\mathcal{F}} \right]$$

3.2.2 Convex Distance Concentration and Rademacher Processes

Weighted Hamming Distance and Convex Distance

• Weighted Hamming distance : Given a vector $a \in \mathbb{R}^n$, $a_i \ge 0$

$$d_a(x,y) = \sum_{i=1}^n a_i I_{x_i \neq y_i}, \quad x, y \in S$$

$$d_a(x,A) = \inf\{d_a(x,y) : y \in A\}, \quad x \in S, A \subset S$$

• Convex distance :

$$d_c(x,y) = \sup_{|a| \le 1} d_a(x,y), \quad x,y \in S$$

 $d_c(x,A) = \inf\{d_c(x,y) : y \in A\}, \quad x \in S, A \subset S$

Lemma 3.2.3

$$U_A(x) := \{ u = (u_i)_{i=1}^n \in \{0, 1\}^n : \exists y \in A \text{ with } y_i = x_i \text{ if } u_i = 0 \}$$

 $V_A(x) : \text{ convex hull of } U_A(x)$

 $d_c(x,A) = \inf\{|v| : v \in V_A(x)\}$ and the infimum is attained at a point in $V_A(x)$.

Theorem 3.2.4 (Talagrand's inequality for the convex distance)

For any $n \in \mathbb{N}$, if $X = (X_1, \dots, X_n)$ is a vector of independent random variables taking values in the product space $S^{(n)} = \prod_{k=1}^n S_k$, and $A \subseteq S^{(n)}$, then

$$E\left(e^{d_c^2(X,A)/4}
ight)\leq rac{1}{Pr\{X\in A\}}$$

hence, for all $t \ge 0$,

$$Pr\{X \in A\}Pr\{d_c(X,A) \geq t\} \leq e^{t^2/4}.$$

Corollary 3.2.5

Let $S = S_1 \times \cdots \times S_n$ be a product of measurable spaces, and let P be a product probability measure on it. Let $F : S \to \mathbb{R}$ be a measurable function satisfying the following Lipschitz property for the distance d_a : for every $x \in S$, there is $a = a(x) \in \mathbb{R}_n$ with |a| = 1 such that

$$F(x) \leq F(y) + d_a(x,y), \quad y \in S.$$

Let m_F be a median of F for P. Then, for all $t \ge 0$,

$$P\{|F`m_F| \ge t\} \le 4e^{t^2/4}.$$

Proof of Corollary 3.2.5

Taking
$$A = \{F \le m\}$$
,
 $F(x) \le m + d_a(x, A) \le m + d_c(x, A)$
 $P\{F \ge m + t\} \le P\{d_c(x, A) \ge t\}$

Corollary 3.2.6 (Concentration inequality for Rademacher (and other) processes)

Let $X_i, 1 \le i \le n$, be independent real random variables such that, for real numbers a_i, b_i ,

$$a_i \leq X_i \leq b_i, 1 \leq i \leq n.$$

Let T be a countable subset of \mathbb{R}^n , and set

$$Z = \sup_{t\in T} \sum_{i=1}^n t_i X_i,$$

where $t = (t_1, \dots, t_n)$. Let m_Z be a median of Z. Then, if $\tilde{\sigma} := \sup_{t \in T} (\sum_{i=1}^n t_i^2 (b_i a_i)^2)^{1/2}$ is finite, we have that, for every $r \ge 0$,

$$Pr\{|Z m_Z| \geq r\} \leq 4e^{r^2/4\tilde{\sigma}^2},$$

 $|EZ \ m_Z| \le 4\sqrt{\pi} \tilde{\sigma}$ and $Var(Z) \le 16 \tilde{\sigma}^2$.

Theorem 3.2.7

For $n < \infty$ and a countable set $T \subset \mathbb{R}_n$, set

$$Z = \sup_{t \in \mathcal{T}} \sum_{i=1}^{n} t_i \epsilon_i, \sigma = \sup_{t \in \mathcal{T}} \left(\sum_{i=1}^{n} t_i^2 \right)^{1/2},$$

and let m_Z be a median of Z. Then, if $\sigma < \infty$,

$$\Pr\{|Z \, \tilde{}\, m_Z| \ge r\} \le 4e \, \tilde{}\, r^2/8\sigma^2$$

and, consequently,

$$|E|Z^{T}m_{Z}| \leq 4\sqrt{2\pi}\sigma$$
 and $Var(Z) \leq 32\sigma^{2}$.

Corollary 3.2.6 vs Theorem 3.2.7

For Rademacher Process

$$\tilde{\sigma} = \sup_{t \in T} \left(\sum_{i=1}^{n} t_i^2 (b_i \, a_i)^2 \right)^{1/2} = 2 \sup_{t \in T} \left(\sum_{i=1}^{n} t_i^2 \right)^{1/2} = 2\sigma$$

• Corollary 3.2.6

$$\Pr\{|Z`m_Z| \ge r\} \le 4e^{r^2/16\sigma^2}$$

Theorem 3.2.7

$$Pr\{|Z m_Z| \ge r\} \le 4e^{r^2/8\sigma^2}$$

Proposition 3.2.8 (Khinchin-Kahane inequalities)

For Z as in Theorem 3.2.7, for all p>q>0, there exists $C_q<\infty$ such that

$$(E|Z|^p)^{1/p} \leq C_q \sqrt{p} (E|Z|^q)^{1/q}.$$

Moreover, there are $\tau > 0$ and c > 0 such that $Pr\{|Z| > c ||Z||_2\} \ge \tau$.

3.2.3 A Lower Bound for the Expected Supremum of a Rademacher Process

Theorem 3.2.9(Variation on Sudakov's inequality

There exists a finite constant K > 0 such that for every $n \in \mathbb{N}$ and $\epsilon > 0$, if T is a bounded subset of \mathbb{R}^n such that

$$E\sup_{t\in\mathcal{T}}\left|\sum_{i=1}^{n}\epsilon_{i}t_{i}\right|\leq\frac{1}{K}\frac{\epsilon^{2}}{\max_{1\leq i\leq n}|t_{i}|},\text{ for all }t\in\mathcal{T},$$

then

$$\epsilon \sqrt{\log N(T, d_2, \epsilon)} \le KE \sup_{t \in T} \left| \sum_{i=1}^n \epsilon_i t_i \right|$$