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Evarist Giné and Richard Nickl Presenter : Seonghyeon KimMathematical Foundations of Infinite-Dimensional Statistical Models Chapter 3.22018.10.26 1 / 22



3.2 Rademacher Processes

3.2 Rademacher Processes
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3.2 Rademacher Processes

Rademacher Processes

ε1, · · · , εn: independent Rademacher variables, independent of the
variables Xi

Conditionally on the variables Xi ,
∑n

i=1 εi f (Xi ) is a Rademacher process.

t →
n∑

i=1

tiεi , t ∈ T ⊆ Rn

Since Rademacher processes are sub-Gaussian, the metric entropy moment
bounds for sub-Gaussian processes given in Section 2.3 apply to these
processes.

Evarist Giné and Richard Nickl Presenter : Seonghyeon KimMathematical Foundations of Infinite-Dimensional Statistical Models Chapter 3.22018.10.26 3 / 22



3.2.1 A Comparison Principle for Rademacher Processes

3.2.1 A Comparison Principle for Rademacher Processes
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3.2.1 A Comparison Principle for Rademacher Processes

Contraction vanishing at 0

ϕ : R→ R is called contraction vanishing at 0 if ϕ satisfies

|ϕ(s)− ϕ(t)| ≤ |s − t|, for all s, t ∈ R

ϕ(0) = 0
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3.2.1 A Comparison Principle for Rademacher Processes

Theorem 3.2.1

Let F be a nonnegative, convex and nondecreasing function defined on
[0,∞). Let ϕi : R→ R be contractions vanishing at 0, and let T be a
bounded set of Rn, n <∞. Then

EF

(
1

2

∥∥∥∥∥
n∑

i=1

εiϕi (ti )

∥∥∥∥∥
T

)
≤ EF

(∥∥∥∥∥
n∑

i=1

εi ti

∥∥∥∥∥
T

)

where t = (t1, · · · , tn) and ‖·‖T denotes, as usual, supremum over all
t ∈ T .
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3.2.1 A Comparison Principle for Rademacher Processes

Notation for Corollary 3.2.2

F : a countable class of measurable functions S → R such that
F (x) <∞ for all x ∈ S , where F (x) = supf ∈F |f (x)|.

U = maxni=1|F (Xi )|
σ2 = supf ∈F

∑n
i=1 Ef

2(Xi )/n. We assume σ2 <∞.

Evarist Giné and Richard Nickl Presenter : Seonghyeon KimMathematical Foundations of Infinite-Dimensional Statistical Models Chapter 3.22018.10.26 7 / 22



3.2.1 A Comparison Principle for Rademacher Processes

Corollary 3.2.2

E

∥∥∥∥∥
n∑

i=1

εi f
2(Xi )

∥∥∥∥∥
F

≤ 4E

[
U

∥∥∥∥∥
n∑

i=1

εi f (Xi )

∥∥∥∥∥
F

]
.

E

∥∥∥∥∥
n∑

i=1

f 2(Xi )

∥∥∥∥∥
F

≤ nσ2 + 8E

[
U

∥∥∥∥∥
n∑

i=1

εi f (Xi )

∥∥∥∥∥
F

]
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3.2.1 A Comparison Principle for Rademacher Processes

Proof of Corollary 3.2.2

For X1, · · · ,Xn fixed, we take in Theorem 3.2.1
ti = Uf (Xi ),
T = {(Uf (X1), · · · ,Uf (Xn)) : f ∈ F} and

ϕi (s) = s2/2U2 ∧ U2/2, so
ϕi (ti ) = ϕi (Uf (Xi )) = f 2(Xi )/2 ∧ U2/2 = f 2(Xi )/2.
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3.2.1 A Comparison Principle for Rademacher Processes

Proof of Corollary 3.2.2
The preceding theorem gives

1

4
Eε

∥∥∥∥∥
n∑

i=1

εi f
2(Xi )

∥∥∥∥∥
F

≤ UEε

∥∥∥∥∥
n∑

i=1

εi f (Xi )

∥∥∥∥∥
F

. Integrating with respect to the variables Xi and then applying the basic
randomisation inequality

E

∥∥∥∥∥
n∑

i=1

f 2(Xi )

∥∥∥∥∥
F

≤ nσ2 + E

∥∥∥∥∥
n∑

i=1

(f 2(Xi )− Ef 2(Xi ))

∥∥∥∥∥
F

≤ nσ2 + 2E

∥∥∥∥∥
n∑

i=1

εi f
2(Xi )

∥∥∥∥∥
F

≤ nσ2 + 8E

[
U

∥∥∥∥∥
n∑

i=1

εi f (Xi )

∥∥∥∥∥
F

]
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3.2.2 Convex Distance Concentration and Rademacher Processes

Weighted Hamming Distance and Convex Distance

Weighted Hamming distance : Given a vector a ∈ Rn, ai ≥ 0

da(x , y) =
n∑

i=1

ai Ixi 6=yi , x , y ∈ S

da(x ,A) = inf{da(x , y) : y ∈ A}, x ∈ S ,A ⊂ S

Convex distance :

dc(x , y) = sup
|a|≤1

da(x , y), x , y ∈ S

dc(x ,A) = inf{dc(x , y) : y ∈ A}, x ∈ S ,A ⊂ S
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3.2.2 Convex Distance Concentration and Rademacher Processes

Lemma 3.2.3

UA(x) := {u = (ui )
n
i=1 ∈ {0, 1}n : ∃y ∈ A with yi = xi if ui = 0}

VA(x) : convex hull of UA(x)

dc(x ,A) = inf{|v | : v ∈ VA(x)} and the infimum is attained at a point in
VA(x).
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3.2.2 Convex Distance Concentration and Rademacher Processes

Theorem 3.2.4 (Talagrand’s inequality for the convex
distance)

For any n ∈ N, if X = (X1, · · · ,Xn) is a vector of independent random
variables taking values in the product space S (n) =

∏n
k=1 Sk , and

A ⊆ S (n), then

E
(
ed

2
c (X ,A)/4

)
≤ 1

Pr{X ∈ A}
hence, for all t ≥ 0,

Pr{X ∈ A}Pr{dc(X ,A) ≥ t} ≤ e`t2/4.
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3.2.2 Convex Distance Concentration and Rademacher Processes

Corollary 3.2.5

Let S = S1 × · · · × Sn be a product of measurable spaces, and let P be a
product probability measure on it. Let F : S → R be a measurable
function satisfying the following Lipschitz property for the distance da: for
every x ∈ S , there is a = a(x) ∈ Rn with |a| = 1 such that

F (x) ≤ F (y) + da(x , y), y ∈ S .

Let mF be a median of F for P. Then, for all t ≥ 0,

P{|F`mF | ≥ t} ≤ 4e`t2/4.
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3.2.2 Convex Distance Concentration and Rademacher Processes

Proof of Corollary 3.2.5

Taking A = {F ≤ m},

F (x) ≤ m + da(x ,A) ≤ m + dc(x ,A)

P{F ≥ m + t} ≤ P{dc(x ,A) ≥ t}
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3.2.2 Convex Distance Concentration and Rademacher Processes

Corollary 3.2.6 (Concentration inequality for Rademacher
(and other) processes)

Let Xi , 1 ≤ i ≤ n, be independent real random variables such that, for real
numbers ai , bi ,

ai ≤ Xi ≤ bi , 1 ≤ i ≤ n.

Let T be a countable subset of Rn, and set

Z = sup
t∈T

n∑
i=1

tiXi ,

where t = (t1, · · · , tn). Let mZ be a median of Z . Then, if
σ̃ := supt∈T (

∑n
i=1 t

2
i (bi`ai )

2)1/2 is finite, we have that, for every r ≥ 0,

Pr{|Z`mZ | ≥ r} ≤ 4e`r2/4σ̃2
,

|EZ`mZ | ≤ 4
√
πσ̃ and Var(Z ) ≤ 16σ̃2.
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3.2.2 Convex Distance Concentration and Rademacher Processes

Theorem 3.2.7

For n <∞ and a countable set T ⊂ Rn, set

Z = sup
t∈T

n∑
i=1

tiεi , σ = sup
t∈T

(
n∑

i=1

t2
i

)1/2

,

and let mZ be a median of Z . Then, if σ <∞,

Pr{|Z`mZ | ≥ r} ≤ 4e`r2/8σ2

and, consequently,

E |Z`mZ | ≤ 4
√

2πσ and Var(Z ) ≤ 32σ2.

Evarist Giné and Richard Nickl Presenter : Seonghyeon KimMathematical Foundations of Infinite-Dimensional Statistical Models Chapter 3.22018.10.26 18 / 22



3.2.2 Convex Distance Concentration and Rademacher Processes

Corollary 3.2.6 vs Theorem 3.2.7

For Rademacher Process

σ̃ = sup
t∈T

(
n∑

i=1

t2
i (bi`ai )

2

)1/2

= 2 sup
t∈T

(
n∑

i=1

t2
i

)1/2

= 2σ

Corollary 3.2.6
Pr{|Z`mZ | ≥ r} ≤ 4e`r2/16σ2

Theorem 3.2.7
Pr{|Z`mZ | ≥ r} ≤ 4e`r2/8σ2
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3.2.2 Convex Distance Concentration and Rademacher Processes

Proposition 3.2.8 (Khinchin-Kahane inequalities)

For Z as in Theorem 3.2.7, for all p > q > 0, there exists Cq <∞ such
that

(E |Z |p)1/p ≤ Cq
√
p(E |Z |q)1/q.

Moreover, there are τ > 0 and c > 0 such that Pr{|Z | > c ‖Z‖2} ≥ τ .
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3.2.3 A Lower Bound for the Expected Supremum of a Rademacher
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3.2.3 A Lower Bound for the Expected Supremum of a Rademacher
Process

Theorem 3.2.9(Variation on Sudakov’s inequality

There exists a finite constant K > 0 such that for every n ∈ N and ε > 0,
if T is a bounded subset of Rn such that

E sup
t∈T

∣∣∣∣∣
n∑

i=1

εi ti

∣∣∣∣∣ ≤ 1

K

ε2

max1≤i≤n|ti |
, for all t ∈ T ,

then

ε
√

logN(T , d2, ε) ≤ KE sup
t∈T

∣∣∣∣∣
n∑

i=1

εi ti

∣∣∣∣∣
.
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